

Université de Lausanne

FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients

Emanuela Romano

Department of Oncology University of Lausanne and Ludwig Center for Cancer Research Switzerland

> SITC's 29th Annual Meeting Tumor Microenvironment and Immunosuppression

Disclosures

Emanuela ROMANO

The following relationships exist related to this presentation:

No Relationships to Disclose

CTLA-4 a key regulator of T cell activation and a failsafe against autoimmunity

CTLA-4 (**cytotoxic T-lymphocyte-associated antigen 4**) is an immune checkpoint molecule that down regulates T-cell responses and is expressed at low levels on naïve T cells and constitutively expressed at regulatory T cells (T_{regs}).

Pardoll, 2012 | Nature Reviews

CTLA-4 a key regulator of T cell activation and failsafe against autoimmunity – mouse model data

- 1. CTLA-4^{-/-} mice die at 3-4 wks due to systemic immune disregulation and lymphoprolipheration
- 2. Disease in CTLA-4 ^{-/-} mice was abrogated when CD28 pathway was interrupted by blockade or deficiency of their shared ligands CD80 and CD86
- 3. The notion of CTLA-4 as an intrinsic negative signal was challenged by CTLA-4^{w/t} and CTLA-4^{-/-} chimeras that showed a normal phenotype!
- 4. Treg-deficient and CTLA-4^{-/-} mice share similar phenotype
- 5. CTLA-4 serves as a major mechanism of Treg suppression

Ipilimumab (human IgG1) phase III: survival data

Hodi & al, NEJM, 2010

CTLA-4 blockade increases CD8 T cell activation and CD8/Treg ratio in the TME

Research article

CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells

Sergio A. Quezada, Karl S. Peggs, Michael A. Curran, and James P. Allison

Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.

Cancer Therapy: Clinical

CTLA4 Blockade Induces Frequent Tumor Infiltration by Activated Lymphocytes Regardless of Clinical Responses in Humans

Rong Rong Huang¹, Jason Jalil², James S. Economou^{3,4}, Bartosz Chmielowski², Richard C. Koya³, Stephen Mok³, Hooman Sazegar², Elizabeth Seja², Arturo Villanueva², Jesus Gomez-Navarro⁵, John A. Glaspy^{2,4}, Alistair J. Cochran¹, and Antoni Ribas^{2,3,4}

2006

Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients

F. Stephen Hodi^{a,b}, Marcus Butler^a, Darryl A. Oble⁴, Michael V. Seiden^{d,a}, Frank G. Haluska¹, Andrea Kruse⁴, Suzanne MacRae⁴, Marybeth Nelson⁴, Christine Canning⁴, Israel Lowys, Alan Kormans, David Lautz⁶, Sara Russell⁶, Michael T. Jaklitsch¹, Nikhil Ramaiya¹, Teresa C. Chen¹, Donna Neuberg^k, James P. Allison^{b,1}, Martin C. Mihm⁴, and Glenn Dranoff⁴

Clinical Cancer Research

Cross-talk between tumor and immune cells

Mellman I, Nature 2011

Immunological study in melanoma patients treated with Ipilimumab

29 melanoma patients undergoing ipilimumab treatment

population ✓ 14 non-responders (NR)

Patient

 \checkmark 15 objective responders (R)

• tumor response was assessed by immune-related response criteria

Variable	N (%)
Mean age - yr	62
Gender	
Male	21 (72%)
Female	8 (28%)
ECOG performance status	
0	17 (59%)
1	12 (41%)
M stage	
M1a	2 (7%)
M1b	6 (21%)
M1c	21 (72%)
No. of prior lines of systemic therapies	
for metastatic disease	
1	28 (97%)
2	1 (3%)
Ipilimumab cycles	
4	23 (79%)
3	3 (10%)
2	3 (10%)
1	0 (0%)

Patients responding to ipilimumab display the highest frequency of CD14+CD16++ monocytes at baseline!

- Human monocytes can be divided into three subpopulations
- Populations are characterized by different expression level of CD16 and CD14
- The classification has been approved by the Nomenclature Committee of the International Union of Immunological Societies

Human Fc γ RIIIA (CD16), a homologue of murine Fc γ RIV, is a major mediator of ADCC

Nonclassical monocytes mediate the depletion of tumor infiltrating T_{regs} via ipilimumab-dependent ADCC in melanoma patients

Antibody-dependent cellular cytotoxicity (ADCC)

Adapted from Nature Reviews | Immunology

Phenotype of peripheral monocytes

CD14⁺⁺CD16⁻ CD14⁺⁺CD16⁺ CD14⁺CD16⁺⁺ lso

Postsort flow cytometric analysis of CD3+CD4+CD25^{bright,int,neg} T cell subgroups

Selective killing of Tregs by CD14+CD16++ monocytes in the presence of ipilimumab

ADDC-dependent Treg depletion by CD14+CD16++ monocytes in normal donors

ADDC-dependent Treg depletion by CD14+CD16++ monocytes in patients

Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma

Tyler R. Simpson,^{1,2,3} Fubin Li,⁴ Welby Montalvo-Ortiz,¹ Manuel A. Sepulveda,³ Katharina Bergerhoff,⁶ Frederick Arce,⁶ Claire Roddie,⁶ Jake Y. Henry,⁶ Hideo Yagita,⁵ Jedd D. Wolchok,³ Karl S. Peggs,⁶ Jeffrey V. Ravetch,⁴ James P. Allison,¹ and Sergio A. Quezada⁶

Treg cell depletion is mediated largely by FcγRIV+ macrophages in the TME

Decreased T_{regs} infiltration in patients responding to ipilimumab

moAb Foxp3

The TME of R patients is enriched with CD68+CD16+ macrophages

- Patients responding to ipilimumab displayed the <u>highest baseline frequencies</u> of circulating nonclassical CD14+CD16++ monocytes. This is a potential biomarker of response.
- CD14⁺CD16⁺⁺ monocyte subpopulation is responsible for the depletion of Tregs
- Preferential depletion of Treg versus Teff is due to the high levels of surface
 CTLA-4 expression on Tregs
- Increased baseline ratio of CD68/CD163 cells within the TME correlated with decreased number of Tregs in R patients

•No difference in the frequency of peripheral NK cells between ipilimumab R and NR patients suggesting that these cells do not play a role in immune

response to ipilimumab

LUDWIG INSTITUTE FOR CANCER RESEARCH

UNIL Université de Lausanne

Acknowledgments

Patients & Families

Monika Kusio-Kobialka

Christiane Meyer

Periklis Foukas

Helene Bichat

Petra Baumgaerter

Danny Labes

Oncology and Pathology Depts.

fondaction

Collaborators

Benjamin Weide (Uni Tubigen)

Pieluigi Ballabeni (UNIL)

Giuseppe Pantaleo (CHUV)

Mentors

Daniel Speiser & Pedro Romero

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation